/* OpenIntro LAB 8 */ *Read in the data from the CSV file located on the OpenIntro website; filename evals url 'http://www.openintro.org/stat/data/evals_sas.csv'; proc import datafile=evals out=evals dbms=csv replace; getnames=yes; run; *Scatter plot of score and bty_avg; proc sgplot data=evals; scatter y=score x=bty_avg; run; *Calculate the correlation for bty_avg and bty_f1lower, and generate the scatterplot; proc corr data=evals plots=scatter(ellipse=none); var bty_avg bty_f1lower; run; *Generate scatterplots for bty_f1lower through bty_avg; ods select matrixplot; proc corr data=evals plots(maxpoints=20000)=matrix(nvar=7); var bty_f1lower--bty_avg; run; *Perform a regression of score on bty_avg and gender; proc glm data=evals; class gender / ref=first; model score=bty_avg gender / solution; run; quit; *Perform a regression predicting score from 13 predictors; proc glm data=evals; class rank ethnicity gender language cls_level cls_profs cls_credits pic_outfit pic_color / ref=first; model score=rank ethnicity gender language age cls_perc_eval cls_students cls_level cls_profs cls_credits bty_avg pic_outfit pic_color / solution; run; quit;