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Preface

This document includes summaries of each section of Advanced High School Statistics
(AHSS) as well as Chapter Highlights, which draw out and tie together the main concepts
of each chapter. Though these summaries follow AHSS, they can be used to complement
any introductory statistics text or course.

These summaries do not include any worked examples. They are not intended to be
used to introduce or to teach the content. They are intended to be used after previous
exposure to the material either in the classroom or via the textbook or its accompanying
videos and slides (linked in the guide). These summaries will serve to clarify, consolidate,
connect, and reinforce the main terms, concepts, and procedures. It is our hope that these
Section Summaries and Chapter Highlights will be helpful to students as they study and
review. Please send any and all comments on this document to leah@openintro.org.
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Chapter 1

Data collection

1.1 Case study: using stents to prevent strokes

• To test the effectiveness of a treatment, researchers often carry out an experiment in
which they randomly assign patients to a treatment group or a control group.

• Researchers compare the relevant summary statistics to get a sense of whether the
treatment group did better, on average, than the control group.

• Ultimately, researchers want to know whether the difference between the two groups
is significant, that is, larger than what would be expected by chance alone.

1.2 Data basics

• Researchers often summarize data in a table, where the rows correspond to individuals
or cases and the columns correspond to the variables, the values of which are
recorded for each individual.

• Variables can be numerical (measured on a numerical scale) or categorical (taking
on levels, such as low/medium/high). Numerical variables can be continuous, where
all values within a range are possible, or discrete, where only specific values, usually
integer values, are possible.

• When there exists a relationship between two variables, the variables are said to be
associated or dependent. If the variables are not associated, they are said to be
independent.

1.3 Overview of data collection principles

• The population is the entire group that the researchers are interested in. Because
it is usually too costly to gather the data for the entire population, researchers will
collect data from a sample, representing a subset of the population.

• A parameter is a true quantity for the entire population, while a statistic is what
is calculated from the sample. A parameter is about a population and a statistic is
about a sample. Remember: p goes with p and s goes with s.
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1.4. OBSERVATIONAL STUDIES AND SAMPLING STRATEGIES 7

• Two common summary quantities are mean (for numerical variables) and propor-
tion (for categorical variables).

• Finding a good estimate for a population parameter requires a random sample; do
not generalize from anecdotal evidence.

• There are two primary types of data collection: observational studies and exper-
iments. In an experiment, researchers impose a treatment to look for a causal
relationship between the treatment and the response. In an observational study,
researchers simply collect data without imposing any treatment.

• Remember: Correlation is not causation! In other words, an association between two
variables does not imply that one causes the other. Proving a causal relationship
requires a well-designed experiment.

1.4 Observational studies and sampling strategies

• In an observational study, one must always consider the existence of confounding
factors. A confounding factor is a “spoiler variable” that could explain an observed
relationship between the explanatory variable and the response. Remember: For a
variable to be confounding it must be associated with both the explanatory variable
and the response variable.

• When taking a sample from a population, avoid convenience samples and volun-
teer samples. Instead, use a random sampling method.

• Random sampling avoids the problem of selection bias. However, response bias
and non-response bias can be present in any type of sample, random or not.

• In a simple random sample, each individual of the population is numbered from
1 to N. Using a random digit table or a random number generator, numbers are
randomly selected and the corresponding individuals become part of the sample.

• In a simple random sample, every individual as well as every group of individuals has
the same probability of being in the sample.

• A stratified random sample involves randomly sampling from every strata, where
the strata should correspond to a variable thought to be associated with the variable
of interest. This ensures that the sample will have appropriate representation from
each of the the different strata and reduces variability in the sample estimates.

• A cluster random sample involves selecting a set of clusters, or groups, and then
collecting data on all individuals in the selected clusters. This can be useful when
sampling clusters is more convenient and less expensive than sampling individuals,
and it is an effective strategy when each cluster is approximately representative of
the population.

• Remember: Strata should be self-similar, while clusters should be diverse. For ex-
ample, if smoking is correlated with what is being estimated, let one stratum be all
smokers and the other be all non-smokers, then randomly select an appropriate num-
ber of individuals from each strata. Alternately, if age is correlated with the variable
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8 CHAPTER 1. DATA COLLECTION

being estimated, one could randomly select a subset of clusters, where each cluster
has mixed age groups.

1.5 Experiments

• In an experiment, researchers impose a treatment to test its effects. In order for
observed differences in the response to be attributed to the treatment and not to
some other factor, it is important to make the treatment groups and the conditions
for the treatment groups as similar as possible.

• Researchers use direct control, ensuring that variables that are within their power
to modify (such as drug dosage or testing conditions) are made the same for each
treatment group.

• Researchers randomly assign subjects to the treatment groups so that the effects of
uncontrolled and potentially confounding variables are evened out among the treat-
ment groups.

• Replication, or imposing the treatments on many subjects, gives more data and
decreases the likelihood that the treatment groups differ on some characteristic due
to chance alone (i.e. in spite of the randomization).

• An ideal experiment is randomized, controlled, and double-blind.

• A completely randomized experiment involves randomly assigning the subjects
to the different treatment groups. To do this, first number the subjects from 1 to N.
Then, randomly choose some of those numbers and assign the corresponding subjects
to a treatment group. Do this in such a way that the treatment group sizes are
balanced, unless there exists a good reason to make one treatment group larger than
another.

• In a blocked experiment, subjects are first separated by a variable thought to affect
the response variable. Then, within each block, subjects are randomly assigned to
the treatment groups as described above, allowing the researcher to compare like to
like within each block.

• When feasible, a matched-pairs experiment is ideal, because it allows for the best
comparison of like to like. A matched-pairs experiment can be carried out on pairs
of subjects that are meaningfully paired, such as twins, or it can involve all subjects
receiving both treatments, allowing subjects to be compared to themselves.

• A treatment is also called a factor or explanatory variable. Each treatment/factor
can have multiple levels, such as yes/no or low/medium/high. When an experiment
includes many factors, multiplying the number of levels of the factors together gives
the total number of treatment groups.

• In an experiment, blocking, randomization, and direct control are used to control for
confounding factors.
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1.5. EXPERIMENTS 9

Chapter Highlights

Chapter 1 focused on various ways that researchers collect data. The key concepts are the
difference between a sample and an experiment and the role that randomization plays in
each.

• Researchers take a random sample in order to draw an inference to the larger
population from which they sampled. When examining observational data, even if
the individuals were randomly sampled, a correlation does not imply a causal link.

• In an experiment, researchers impose a treatment and use random assignment in
order to draw causal conclusions about the effects of the treatment. While often
implied, inferences to a larger population may not be valid if the subjects were not
also randomly sampled from that population.

Related to this are some important distinctions regarding terminology. The terms stratify-
ing and blocking cannot be used interchangeably. Likewise, taking a simple random sample
is different than randomly assigning individuals to treatment groups.

• Stratifying vs Blocking. Stratifying is used when sampling, where the purpose is
to sample a subgroup from each stratum in order to arrive at a better estimate for
the parameter of interest. Blocking is used in an experiment to separate subjects into
blocks and then compare responses within those blocks. All subjects in a block are
used in the experiment, not just a sample of them.

• Random sampling vs Random assignment. Random sampling refers to sampling
a subset of a population for the purpose of inference to that population. Random
assignment is used in an experiment to separate subjects into groups for the purpose
of comparison between those groups.

When randomization is not employed, as in an observational study, neither inferences
nor causal conclusions can be drawn. Always be mindful of possible confounding factors
when interpreting the results of observation studies.
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Chapter 2

Summarizing data

2.1 Examining numerical data

• A scatterplot is a statistical graph illustrating the relationship between two numer-
ical variables. The variables must be paired, which is to say that they correspond to
one another. The linear association between two variables can be positive or negative,
or there can be no association. Positive association means that larger values of
the first variable are associated with larger values of the second variable. Negative
association means that larger values of the first variable are associated with smaller
values of the second variable. Additionally, the association can follow a linear trend
or a curved (nonlinear) trend.

• When looking at a single variable, researchers want to understand the distribution of
the variable. The term distribution refers to the values that a variable takes and
the frequency of those values. When looking at a distribution, note the presence of
clusters, gaps, and outliers.

• Distributions may be symmetric or they may have a long tail. If a distribution has
a long left tail (with greater density over the higher numbers), it is left skewed. If
a distribution has a long right tail (with greater density over the smaller numbers),
it is right skewed.

• Distributions may be unimodal, bimodal, or multimodal.

• Two graphs that are useful for showing the distribution of a small number of ob-
servations are the stem-and-leaf plot and dot plot. These graphs are ideal for
displaying data from small samples because they show the exact values of the obser-
vations and how frequently they occur. However, they are impractical for larger data
sets.

• For larger data sets it is common to use a frequency histogram or a relative fre-
quency histogram to display the distribution of a variable. This requires choosing
bins of an appropriate width.

• To see cumulative amounts, use a cumulative frequency histogram. A cumula-
tive relative frequency histogram is ideal for showing percentiles.

10
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2.2. NUMERICAL SUMMARIES AND BOX PLOTS 11

2.2 Numerical summaries and box plots

• In this section we looked at two measures of center and two measures of spread.

• When summarizing or comparing distributions, always comment on center,
spread, and shape. Also, mention outliers or gaps if applicable. Put descriptions
in context, that is, identify the variable(s) being summarized by name and include
relevant units. Remember: Center, Spread, and Shape! In context!

• Mean and median are measures of center. (A common mistake is to report mode
as a measure of center. However, a mode can appear anywhere in a distribution.)

– The mean is the sum of all the observations divided by the number of observa-
tions, n.
x̄ = 1

n

∑
xi = x1+x2+...+xn

n

– In an ordered data set, the median is the middle number when n is odd. When
n is even, the median is the average of the two middle numbers.

• Because large values exert more “pull” on the mean, large values on the high end
tend to increase the mean more than they increase the median. In a right skewed
distribution, therefore, the mean is greater than the median. Analogously, in a left
skewed distribution, the mean is less than the median. Remember: The mean follows
the tail! The skew is the tail!

• Standard deviation (SD) and Interquartile range (IQR) are measures of spread.
SD measures the typical spread from the mean, whereas IQR measures the spread of
the middle 50% of the data.

– To calculate the standard deviation, subtract the average from each value, square
all those differences, add them up, divide by n − 1, then take the square root.
Note: The standard deviation is the square root of the variance.

s =
√

1
n−1

∑
(xi − x̄)2

– The IQR is the difference between the third quartile Q3 and the first quartile
Q1.

IQR = Q3 −Q1

• Outliers are observations that are extreme relative to the rest of the data. Two rules
of thumb for identifying observations as outliers are:

– more than 2 standard deviations above or below the mean

– more than 1.5× IQR below Q1 or above Q3

Note: These rules of thumb generally produce different cutoffs.

• Mean and SD are sensitive to outliers. Median and IQR are more robust and less
sensitive to outliers.

• The empirical rule states that for approximately symmetric data, about 68% of the
data will be within one standard deviation of the mean and about 95% will be within
two standard deviations of the mean.
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12 CHAPTER 2. SUMMARIZING DATA

• Linear transformations of data. Adding a constant to every value in a data set
shifts the mean but does not affect the standard deviation. Multiplying the values in
a data set by a constant will multiply the mean and the standard deviation by that
constant, except that the standard deviation must always remain positive.

• Range is defined as the difference between the maximum value and the minimum
value, i.e. max−min.

• Box plots do not show the distribution of a data set in the way that histograms do.
Rather, they provide a visual depiction of the 5-number summary, which consists
of: min,Q1, Q2, Q3,max. It is important to be able to identify the median, IQR,
and direction of skew from a box plot.

2.3 Considering categorical data

• Categorical variables, unlike numerical variables, are simply summarized by counts
(how many) and proportions. These are referred to as frequency and relative fre-
quency, respectively.

• When summarizing one categorical variable, a one-way frequency table is useful.
For summarizing two categorical variables and their relationship, use a two-way
frequency table (also known as a contingency table).

• To graphically summarize a single categorical variable, use a bar chart. To summa-
rize and compare two categorical variables, use side-by-side or segmented (stacked)
bar charts.

• Pie charts are another option for summarizing categorical data, but they are more
difficult to read and bar charts are generally a better option.

Chapter Highlights

A raw data matrix/table may have thousands of rows. The data need to be summarized
in order to makes sense of all the information. In this chapter, we looked at ways to sum-
marize data graphically, numerically, and verbally.

Categorical data

• A single categorical variable is summarized with counts or proportions in a
one-way table. A bar graph is used to show the frequency or relative frequency
of the categories that the variable takes on.

• Two categorical variables can be summarized in a two-way table and with a side-
by-side bar chart or a segmented bar chart.

Numerical data

• When looking at a single numerical variable, we try to understand the distri-
bution of the variable. The distribution of a variable can be represented with a
frequency table and with a graph, such as a stem-and-leaf plot or dot plot for
small data sets, or a histogram for larger data sets. If only a summary is desired, a
box plot may be used.
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2.3. CONSIDERING CATEGORICAL DATA 13

• The distribution of a variable can be described and summarized with center (mean
or median), spread (SD or IQR), and shape (right skewed, left skewed, approxi-
mately symmetric).

• Z-scores and percentiles are useful for identifying a data point’s relative position
within a data set.

• Outliers are values that appear extreme relative to the rest of the data. Investi-
gating outliers can provide insight into properties of the data or may reveal data
collection/entry errors.

• When comparing the distribution of two variables, use two dot plots, two histograms,
a back-to-back stem-and-leaf, or parallel box plots.

• To look at the association between two numerical variables, use a scatter plot.

Graphs and numbers can summarize data, but they alone are insufficient. It is the role
of the researcher or statistician to ask questions, to use these tools to identify patterns
and departure from patterns, and to make sense of this in the context of the data. Strong
writing skills are critical for being able to communicate the results to a wider audience.



Chapter 3

Probability

3.1 Defining probability

• When an outcome depends upon a chance process, we can define the probability of
the outcome as the proportion of times it would occur if we repeated the process an
infinite number of times. Also, even when an outcome is not truly random, modeling
it with probability can be useful.

• The Law of Large Numbers states that the relative frequency, or proportion of
times an outcome occurs after n repetitions, stabilizes around the true probability as
n gets large.

• The probability of an event is always between 0 and 1, inclusive.

• The probability of an event and the probability of its complement add up to 1.
Sometime we use P (A) = 1 − P (not A) when P (not A) is easier to calculate than
P (A).

• A and B are disjoint, i.e. mutually exclusive, if they cannot happen together. In
this case, the events do not overlap and P (A and B) = 0.

• In the special case where A and B are disjoint events: P (A or B) = P (A) + P (B).

• When A and B are not disjoint, adding P (A) and P (B) will overestimate P (A or B)
because the overlap of A and B will be added twice. Therefore, when A and B are
not disjoint, use the General Additional Rule:
P (A or B) = P (A) + P (B)− P (A and B).1

• To find the probability that at least one of several events occurs, use a special case
of the rule of complements: P (at least one) = 1− P (none).

• When only considering two events, the probability that one or the other happens is
equal to the probability that at least one of the two events happens. When dealing
with more than two events, the General Addition Rule becomes very complicated.
Instead, to find the probability that A or B or C occurs, find the probability that
none of them occur and subtract that value from 1.

1Often written: P (A ∪B) = P (A) + P (B)− P (A ∩B).

14
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3.2. CONDITIONAL PROBABILITY 15

• Two events are independent when the occurrence of one does not change the like-
lihood of the other.

• In the special case where A and B are independent: P (A and B) = P (A)× P (B).

3.2 Conditional probability

• A conditional probability can be written as P (A|B) and is read, “Probability of A
given B”. P (A|B) is the probability of A, given that B has occurred. In a conditional
probability, we are given some information. In an unconditional probability, such
as P (A), we are not given any information.

• Sometimes P (A|B) can be deduced. For example, when drawing without replacement
from a deck of cards, P (2nd draw is an Ace | 1st draw was an Ace) = 3

51 . When this
is not the case, as when working with a table or a Venn diagram, one must use the

conditional probability rule P (A|B) = P (A and B)
P (B) .

• In the last section, we saw that two events are independent when the outcome of
one has no effect on the outcome of the other. When A and B are independent,
P (A|B) = P (A).

• When A and B are dependent, find the probability of A and B using the General
Multiplication Rule: P (A and B) = P (A|B)× P (B).

• In the special case where A and B are independent, P (A and B) = P (A)× P (B).

• If A and B are mutually exclusive, they must be dependent, since the occurrence
of one of them changes the probability that the other occurs to 0.

• When sampling without replacement, such as drawing cards from a deck, make
sure to use conditional probabilities when solving and problems.

• Sometimes, the conditional probability P (B|A) may be known, but we are interested
in the “inverted” probability P (A|B). Bayes’ Theorem helps us solve such condi-
tional probabilities that cannot be easily answered. However, rather than memorize
Bayes’ Theorem, one can generally draw a tree diagram and apply the conditional

probability rule P (A|B) = P (A and B)
P (B) . The resulting answer often has the form

w×x + y×z
w×x , where w, x, y, z are numbers from a tree diagram.

3.3 The binomial formula

•
(
n
k

)
, the binomial coefficient, describes the number of combinations for arranging

k successes among n trials.
(
n
k

)
= n!

k!(n−k)! , where n! = 1× 2× 3× ...n, and 0!=0.

• The binomial formula can be used to find the probability that something happens
exactly k times in n trials.

• Suppose the probability of a single trial being a success is p. Then the probability of
observing exactly k successes in n independent trials is given by(

n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k
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16 CHAPTER 3. PROBABILITY

• To apply the binomial formula, the events must be independent from trial to trial.
Additionally, n, the number of trials must be fixed in advance, and p, the probability
of the event occurring in a given trial, must be the same for each trial.

• To use the binomial formula, first confirm that the binomial conditions are met. Next,
identify the number of trials n, the number of times the event is to be a “success” k,
and the probability that a single trial is a success p. Finally, plug these three numbers
into the formula to get the probability of exactly k successes in n trials.

• The pk(1 − p)n−k part of the binomial formula is the probability of just one combi-
nation. Since there are

(
n
k

)
combinations, we add pk(1− p)n−k up

(
n
k

)
times. We can

think of the binomial formula as: [# of combinations]× P (a single combination).

• To find a probability involving at least or at most, first determine if the scenario is
binomial. If so, apply the binomial formula as many times as needed and add up the
results. e.g. P (at least 3 Heads in 5 tosses of a fair coin) = P (exactly 3 Heads) +
P (exactly 4 Heads) +P (exactly 5 Heads), where each probability can be found using
the binomial formula.

3.4 Simulations

• When a probability is difficult to determine via a formula, one can set up a simula-
tion to estimate the probability.

• The relative frequency theory of probability and the Law of Large Numbers
are the mathematical underpinning of simulations. A larger number of trials should
tend to produce better estimates.

• The first step to setting up a simulation is to assign digits to represent outcomes. This
should be done in such a way as to give the event of interest the correct probability.
Then, using a random number table, calculator, or computer, generate random digits
(outcomes). Repeat this a specified number of trials or until a given stopping rule.
When this is finished, count up how many times the event happened and divide that
by the number of trials to get the estimate of the probability.

3.5 Random variables

• A discrete probability distribution can be summarized in a table that consists of
all possible outcomes of a random variable and the probabilities of those outcomes.
The outcomes must be disjoint, and the sum of the probabilities must equal 1.

• A probability distribution can be represented with a histogram and, like the distri-
butions of data that we saw in Chapter 2, can be summarized by its center, spread,
and shape.

• When given a probability distribution table, we can calculate the mean (expected
value) and standard deviation of a random variable using the following formulas.
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E(X) = µx =
∑

(xi × pi)

= x1 × p1 + x2 × p2 + · · ·+ xn × pn
V ar(X) = σ2

x =
∑

(xi − µx)2 × pi
= (x1 − µx)2 × p1 + (x2 − µx)2 × p2 + · · ·+ (xn − µx)2 × pn

SD(X) = σx =
√
V ar(X)

We can think of pi as the weight, and each term is weighted its appropriate amount.

• The mean of a probability distribution does not need to be a value in the distribu-
tion. It represents the average of many, many repetitions of a random process. The
standard deviation represents the typical variation of the outcomes from the mean,
when the random process is repeated over and over.

• Linear transformations. Adding a constant to every value in a probability distri-
bution adds that value to the mean, but it does not affect the standard deviation.
When multiplying every value by a constant, this multiplies the mean by the constant
and it multiplies the standard deviation by the absolute value of the constant.

• Combining random variables. Let X and Y be random variables and let a and b
be constants.

– The expected value of the sum is the sum of the expected values.

E(X + Y ) = E(X) + E(Y )

E(aX + bY ) = a× E(X) + b× E(Y )

– When X and Y are independent: The standard deviation of a sum or a differ-
ence is the square root of the sum of each standard deviation squared.

SD(X + Y ) =
√

(SD(X))2 + (SD(Y ))2

SD(X − Y ) =
√

(SD(X))2 + (SD(Y ))2

SD(aX + bY ) =
√

(a× SD(X))2 + (b× SD(Y ))2

The SD properties require that X and Y be independent. The expected value prop-
erties hold true whether or not X and Y are independent.

3.6 Continuous distributions

• Histograms use bins with a specific width to display the distribution of a variable.
When there is enough data and the data does not have gaps, as the bin width gets
smaller and smaller, the histogram begins to resemble a smooth curve, or a contin-
uous distribution.

• Continuous distributions are often used to approximate relative frequencies and prob-
abilities. In a continuous distribution, the area under the curve corresponds to relative
frequency or probability. The total area under a continuous probability distribution
must equal 1.

• Because the area under the curve for a single point is zero, the probability of any
specific value is zero. This implies that, for example, P (X < 5) = P (X ≤ 5) for a
continuous probability distribution.
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18 CHAPTER 3. PROBABILITY

• Finding areas under curves is challenging; it is common to use distribution tables,
calculators, or other technology to find such areas.

Chapter Highlights

This chapter focused on understanding likelihood and chance variation, first by solving
individual probability questions and then by investigating probability distributions.

The main probability techniques covered in this chapter are as follows:

• The General Multiplication Rule for and probabilities (intersection), along with
the special case when events are independent.

• The General Addition Rule for or probabilities (union), along with the special
case when events are mutually exclusive.

• The Conditional Probability Rule.

• Tree diagrams and Bayes’ Theorem to solve more complex conditional problems.

• The Binomial Formula for finding the probability of exactly k successes in n inde-
pendent trials.

• Simulations and the use of random digits to estimate probabilities.

Fundamental to all of these problems is understanding when events are independent and
when they are mutually exclusive. Two events are independent when the outcome of one
does not affect the outcome of the other, i.e. P (A|B) = P (A). Two events are mutually
exclusive when they cannot both happen together, i.e. P (A and B) = 0.

Moving from solving individual probability questions to studying probability distributions
helps us better understand chance processes and quantify expected chance variation.

• For a discrete probability distribution, the sum of the probabilities must equal 1.
For a continuous probability distribution, the area under the curve represents
a probability and the total area under the curve must equal 1.

• As with any distribution, one can calculate the mean and standard deviation of a
probability distribution. In the context of a probability distribution, the mean and
standard deviation describe the average and the typical deviation from the average,
respectively, after many, many repetitions of the chance process.

• A probability distribution can be summarized by its center (mean, median), spread
(SD, IQR), and shape (right skewed, left skewed, approximately symmetric).

• Adding a constant to every value in a probability distribution adds that value to the
mean, but it does not affect the standard deviation. When multiplying every value
by a constant, this multiplies the mean by the constant and it multiplies the standard
deviation by the absolute value of the constant.

• The mean of the sum of two random variables equals the sum of the means. However,
this is not true for standard deviations. Instead, when finding the standard deviation
of a sum or difference of random variables, take the square root of the sum of each
of the standard deviations squared.
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The study of probability is useful for measuring uncertainty and assessing risk. In addition,
probability serves as the foundation for inference, providing a framework for evaluating
when an outcome falls outside of the range of what would be expected by chance alone.



Chapter 4

Distribution of random
variables

4.1 Normal distribution

• A Z-score represents the number of standard deviations a value in a data set is above
or below the mean. To calculate a Z-score use: Z = x−mean

SD .

• Z-scores do not depend on units. When looking at distributions with different units
or different standard deviations, Z-scores are useful for comparing how far values are
away from the mean (relative to the distribution of the data).

• The normal distribution is the most commonly used distribution in Statistics.
Many distribution are approximately normal, but none are exactly normal.

• The 68-95-99.7 Rule, otherwise known as the empirical rule, comes from the normal
distribution. The closer a distribution is to normal, the better this rule will hold.

• It is often useful to use the standard normal distribution, which has mean 0 and
SD 1, to approximate a discrete histogram. There are two common types of normal
approximation problems, and for each a key step is to find a Z-score.

A: Find the percent or probability of a value greater/less than a given x-value.

1. Verify that the distribution of interest is approximately normal.
2. Calculate the Z-score. Use the provided population mean and SD to stan-

dardize the given x-value.
3. Use a calculator function (e.g. normcdf on a TI) or a normal table to find

the area under the normal curve to the right/left of this Z-score; this is the
estimate for the percent/probability.

B: Find the x-value that corresponds to a given percentile.

1. Verify that the distribution of interest is approximately normal.
2. Find the Z-score that corresponds to the given percentile (using, for example,

invNorm on a TI).
3. Use the Z-score along with the given mean and SD to solve for the x -value.

20
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• Because the sum or difference of two normally distributed variables is itself a normally
distributed variable, the normal approximation is also used in the following type of
problem.

Find the probability that a sum X+Y or a difference X−Y is greater/less than some
value.

1. Verify that the distribution of X and the distribution of Y are approximately
normal.

2. Find the mean of the sum or difference. Recall: the mean of a sum is the
sum of the means. The mean of a difference is the difference of the means.
Find the SD of the sum or difference using:
SD(X + Y ) = SD(X − Y ) =

√
(SD(X))2 + (SD(Y ))2.

3. Calculate the Z-score. Use the calculated mean and SD to standardize the given
sum or difference.

4. Find the appropriate area under the normal curve.

4.2 Sampling distribution of a sample mean

• The symbol x̄ denotes the sample average. x̄ for any particular sample is a number.
However, x̄ can vary from sample to sample. The distribution of all possible values of
x̄ for repeated samples of a fixed size from a certain population is called the sampling
distribution of x̄.

• The standard deviation of x̄ describes the typical error or distance of the sample
mean from the population mean. It also tells us how much the sample mean is likely
to vary from one random sample to another.

• The standard deviation of x̄ will be smaller than the standard deviation of the pop-
ulation by a factor of

√
n. The larger the sample, the better the estimate tends to

be.

• Consider taking a simple random sample from a population with a fixed mean and
standard deviation. The Central Limit Theorem ensures that regardless of the
shape of the original population, as the sample size increases, the distribution of the
sample average x̄ becomes more normal.

• Three important facts about the sampling distribution of the sample average x̄:

– The mean of a sample mean is denoted by µx̄, and it is equal to µ. (center)

– The SD of a sample mean is denoted by σx̄, and it is equal to σ√
n

. (spread)

– When the population is normal or when n ≥ 30, the sample mean closely follows
a normal distribution. (shape)

• These facts are used when solving the following two types of normal approximation
problems involving a sample mean or a sample sum.

A: Find the probability that a sample average will be greater/less than a certain
value.

1. Verify that the population is approximately normal or that n ≥ 30.
2. Calculate the Z-score. Use µx̄ = µ and σx̄ = σ√

n
to standardize the sample

average.
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22 CHAPTER 4. DISTRIBUTION OF RANDOM VARIABLES

3. Find the appropriate area under the normal curve.

B: Find the probability that a sample sum/total will be greater/less than a certain
value.

1. Convert the sample sum into a sample average, using x̄ = sum
n .

2. Do steps 1-3 from Part A above.

4.3 Geometric distribution

• It is useful to model yes/no, success/failure with the values 1 and 0, respectively. We
call the probability of success p and the probability of failure 1− p.

• When the trials are independent and the value of p is constant, the probability of
finding the first success on the nth trial is given by (1− p)n−1p. We can see the
reasoning behind this formula as follows: for the first success to happen on the nth

trial, it has to not happen the first n − 1 trials (with probability 1 − p), and then
happen on the nth trial (with probability p).

• When we consider the entire distribution of possible values for the how long until
the first success, we get a discrete probability distribution known as the geometric
distribution. The geometric distribution describes the waiting time until the first
success, when the trials are independent and the probability of success, p, is constant.

• The geometric distribution is always right skewed and, in fact, has no maximum value.
The probabilities, though, decrease exponentially fast.

• Even though the geometric distribution has an infinite number of values, it has a
well-defined mean, µ = 1

p . If the probability of success is 1
10 , then on average, it

takes 10 trials until we see the first success.

• Note that when the trials are not independent, we can simply modify the geometric
formula to find the probability that the first success happens on the nth trial. Instead
of simply raising (1−p) to the n−1, multiply the appropriate conditional probabilities.

4.4 Binomial distribution

In the previous chapter, we introduced the binomial formula to find the probability of
exactly k successes in n trials for an event that has probability p of success. Instead of
looking at this scenario piecewise, we can describe the entire distribution of the number of
successes and their corresponding probabilities.

• The distribution of the number of successes in n independent trials or in a random
sample of size n gives rise to a binomial distribution.

• To write out a binomial probability distribution table, list all possible values for
k, the number of successes, then use the binomial formula to find the probability of
each of those values.

• Because a binomial distribution can be thought of as the sum of a bunch of 0s and 1s,
the Central Limit Theorem applies. As n gets larger, the shape of the binomial
distribution becomes more normal.
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• We call the rule of thumb for when the binomial distribution can be well modeled with
a normal distribution the success-failure condition. The success-failure condition
is met when there are at least 10 successes and 10 failures, or when np ≥ 10 and
n(1− p) ≥ 10.

• If X follows a binomial distribution with parameters n and p, then:

– The mean is given by µx = np. (center)

– The standard deviation is given by σx =
√
np(1− p). (spread)

– When np ≥ 10 and n(1 − p) ≥ 10, the binomial distribution is approximately
normal. (shape)

• It is often easier to use normal approximation to the binomial distribution
rather than evaluate the binomial formula many times. These three properties of the
binomial distribution are used when solving the following type of problem.

Find the probability of getting more than / fewer than X yeses in n trials or in a
sample of size n.

1. Identify n and p. Verify than np ≥ 10 and n(1 − p) ≥ 10, which implies that
normal approximation is reasonable.

2. Calculate the Z-score. Use µx = np and σx =
√
np(1− p) to standardize the X

value.

3. Find the appropriate area under the normal curve.

4.5 Sampling distribution of a sample proportion

The binomial distribution shows the distribution of the number of successes in n trials.
Often, we are interested in the proportion of successes rather than the number of successes.

• To convert from ”number of yeses” to ”proportion of yeses” we simply divide the
number by n. The sampling distribution of the sample proportion p̂ is identical to
the binomial distribution with a change of scale, i.e. different mean and different SD,
but same shape.

• The same success-failure condition for the binomial distribution holds for a sample
proportion p̂.

• Three important facts about the sampling distribution of the sample proportion p̂:

– The mean of a sample proportion is denoted by µp̂, and it is equal to p. (center)

– The SD of a sample proportion is denoted by σp̂, and it is equal to
√

p(1−p)
n .

(spread)

– When np ≥ 10 and n(1− p) ≥ 10, the distribution of the sample proportion will
be approximately normal. (shape)

• We use these properties when solving the following type of normal approximation
problem involving a sample proportion. Find the probability of getting more / less
than x% yeses in a sample of size n.

1. Identify n and p. Verify than np ≥ 10 and n(1 − p) ≥ 10, which implies that
normal approximation is reasonable.
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2. Calculate the Z-score. Use µp̂ = p and σp̂ =
√

p(1−p)
n to standardize the sample

proportion.

3. Find the appropriate area under the normal curve.

Chapter Highlights

This chapter began by introducing the normal distribution. A common thread that ran
through this chapter is the use of the normal approximation in various contexts. The
key steps are included for each of the normal approximation scenarios below.

1. Normal approximation for data:
- Verify that population is approximately normal.
- Use the given mean µ and SD σ to find the Z-score for the given x value.

2. Normal approximation for a sample mean/sum:
Verify that population is approximately normal or that n ≥ 30.
Use µx̄ = µ and σx̄ = σ√

n
to find the Z-score for the given/calculated sample mean.

3. Normal approximation for the number of successes (binomial):
- Verify that np ≥ 10 and n(1− p) ≥ 10.
- Use µx = np and σx =

√
np(1− p) to find the Z-score for the given number of

successes.

4. Normal approximation for a sample proportion:
- Verify that np ≥ 10 and n(1− p) ≥ 10.

- Use µp̂ = p and σp̂ =
√

p(1−p)
n to find the Z-score for the given sample proportion.

5. Normal approximation for the sum of two independent random variables:
- Verify that each random variable is approximately normal.
- Use E(X+Y ) = E(X) +E(Y ) and SD(X+Y ) =

√
(SD(X))2 + (SD(Y ))2 to find

the Z-score for the given sum.

Cases 1 and 2 apply to numerical variables, while cases 3 and 4 are for categorical yes/no
variables. Case 5 applies to both numerical and categorical variables.

Note that in the binomial case and in the case of proportions, we never look to see if
the population is normal. That would not make sense because the “population” is simply
a bunch of no/yes, 0/1 values and could not possibly be normal.

The Central Limit Theorem is the mathematical rule that ensures that when the sam-
ple size is sufficiently large, the sample mean/sum and sample proportion/count will be
approximately normal.



Chapter 5

Foundations for inference

5.1 Estimating unknown parameters

• In this section we laid the groundwork for our study of inference. Inference involves
using known sample values to estimate or better understand unknown population
values.

• A sample statistic can serve as a point estimate for an unknown parameter. For
example, the sample mean is a point estimate for an unknown population mean, and
the sample proportion is a point estimate for an unknown population proportion.

• It is helpful to imagine a point estimate as being drawn from a particular sampling
distribution.

• The standard error (SE) of a point estimate tells us the typical error or uncertainty
associated with the point estimate. It is also an estimate of the spread of the sampling
distribution.

• A point estimate is unbiased (accurate) if the sampling distribution (i.e., the distri-
bution of all possible outcomes of the point estimate from repeated samples from the
same population) is centered on the true population parameter.

• A point estimate has lower variability (more precise) when the standard deviation
of the sampling distribution is smaller.

item In a random sample, increasing the sample size n will make the standard error
smaller. This is consistent with the intuition that larger samples tend to be more
reliable, all other things being equal.

• In general, we want a point estimate to be unbiased and to have low variability.
Remember: the terms unbiased (accurate) and low variability (precise) are properties
of generic point estimates, which are variables that have a sampling distribution.
These terms do not apply to individual values of a point estimate, which are numbers.

25

http://www.openintro.org/redirect.php?go=youtube-DNIauUrRIEM&list=PLkIselvEzpM7Pjo94m1e7J5jkIZkbQAl4&referrer=ahss_pdf
http://www.openintro.org/redirect.php?go=gdoc_aps_slides_5-1&referrer=ahss_pdf


26 CHAPTER 5. FOUNDATIONS FOR INFERENCE

5.2 Confidence intervals

• A point estimate is not perfect; there is almost always some error in the estimate. It
is often useful to supply a plausible range of values for the parameter, which we call
a confidence interval.

• A confidence interval is centered on the point estimate and extends a certain number
of standard errors on either side of the estimate, depending upon how confident one
wants to be. For a fixed sample size, to be more confident of capturing the true value
requires a wider interval.

• When the sampling distribution of a point estimate can reasonably be modeled as
normal, such as with a sample proportion, then the following are true:

– A 68% confidence interval is given by: point estimate ± SE of estimate.
We can be 68% confident this interval captures the true value.

– A 95% confidence interval is given by: point estimate ± 1.96× SE of estimate.
We can be 95% confident this interval captures the true value.

– A C% confidence interval is given by: point estimate ± z? × SE of estimate.
We can be C% confident this interval captures the true value.

• For a C% confidence interval described above, we select z? such that the area between
-z? and z? under the standard normal curve is C%. Use the t-table at row ∞ to find
the critical value z?.1

• After interpreting the interval, we can usually draw a conclusion, with C% confidence,
about whether a given value X is a reasonable value for the population parameter.
When drawing a conclusion based on a confidence interval, there are three possibili-
ties.

– We have evidence that the true [parameter]:

...is greater than X, because the entire interval is above X.

...is less than X, because the entire interval is below X.

– We do not have evidence that the true [parameter] is not X, because X is in the
interval.

• AP exam tip: A full confidence interval procedure includes the following steps.

1. Identify: Identify the parameter and the confidence level.

2. Choose: Choose the appropriate interval procedure and identify it by name.

3. Check: Check that the conditions for the interval procedure are met.

4. Calculate: Calculate the confidence interval and record it in interval form.

CI: point estimate ± critical value× SE of estimate

5. Conclude: Interpret the interval and, if applicable, draw a conclusion based on
whether the interval is entirely above, is entirely below, or contains the value of
interest.

1We explain the relationship between z and t in the next chapter.
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Interpreting confidence intervals and confidence levels

• 68% and 95% are examples of confidence levels. A correct interpretation of a
95% confidence level is that if many samples of the same size were taken from the
population, about 95% of the resulting confidence intervals would contain the true
population parameter. Note that this is a relative frequency interpretation.

• We cannot use the language of probability to interpret an individual confidence in-
terval, once it has been calculated. The confidence level tells us what percent of the
intervals will contain the population parameter, not the probability that a calculated
interval contains the population parameter. Each calculated interval either does or
does not contain the population parameter.

Margin of error

• Confidence intervals are often reported as: point estimate ± margin of error. The
margin of error (ME) = critical value × SE of estimate, and it tells us, with a
particular confidence, how much we expect our point estimate to deviate from the
true population value due to chance.

• The margin of error depends on the confidence level ; the standard error does not.
Other things being constant, a higher confidence level leads to a larger margin of
error.

• For a fixed confidence level, increasing the sample size decreases the margin of error.
This assumes a random sample.

• The margin of error formula only applies if a sample is random. Moreover, the
margin of error measures only sampling error ; it does not account for additional error
introduced by response bias and non-response bias. Even with a perfectly random
sample, the actual error in a poll is likely higher than the reported margin of error.2

5.3 Introducing hypothesis testing

• A hypothesis test is a statistical technique used to evaluate competing claims based
on data.

• The competing claims are called hypotheses and are often about population param-
eters (e.g. µ and p); they are never about sample statistics.

– The null hypothesis is abbreviated H0. It represents a skeptical perspective
or a perspective of no difference or no change.

– The alternative hypothesis is abbreviatedHA. It represents a new perspective
or a perspective of a real difference or change. Because the alternative hypothesis
is the stronger claim, it bears the burden of proof.

• The logic of a hypothesis test: In a hypothesis test, we begin by assuming that
the null hypothesis is true. Then, we calculate how unlikely it would be to get a
sample value as extreme as we actually got in our sample, assuming that the null
value is correct. If this likelihood is too small, it casts doubt on the null hypothesis
and provides evidence for the alternative hypothesis.

2nytimes.com/2016/10/06/upshot/when-you-hear-the-margin-of-error-is-plus-or-minus-3-percent-
think-7-instead.html
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• We set a significance level, denoted α, which represents the threshold below which
we will reject the null hypothesis. The most common significance level is α = 0.05.
If we require more evidence to reject the null hypothesis, we use a smaller α.

• After verifying that the relevant conditions are met, we can calculate the test
statistic. The test statistic tells us how many standard errors the point estimate
(sample value) is from the null value (i.e. the value hypothesized for the parameter in
the null hypothesis). When investigating a single mean or proportion or a difference
of means or proportions, the test statistic is calculated as: point estimate − null value

SE of estimate .

• After the test statistic, we calculate the p-value. We find and interpret the p-value
according to the nature of the alternative hypothesis. The three possibilities are:

HA: p > p0. The p-value corresponds to the area in the upper tail and is the
probability of observing a sample value as large as our sample
value, if H0 were true.

HA: p < p0. The p-value corresponds to the area in the lower tail and is the
probability of observing a sample value as small as our sample
value, if H0 were true.

HA: p 6= p0. The p-value corresponds to the area in both tails and is the
probability of observing a sample value as far from the null
value as our sample value, if H0 were true.

• The conclusion or decision of a hypothesis test is based on whether the p-value is
smaller or larger than the preset significance level α.

– When the p-value < α, we say the results are statistically significant at
the α level and we have evidence of a real difference or change. The observed
difference is beyond what would have been expected from chance variation alone.
This leads us to reject H0 and gives us evidence for HA.

– When the p-value > α, we say the results are not statistically significant at the
α level and we do not have evidence of a real difference or change. The observed
difference was within the realm of expected chance variation. This leads us to
not reject H0 and does not give us evidence for HA.

• AP exam tip: A full hypothesis test includes the following steps.

1. Identify: Identify the hypotheses and the significance level.

2. Choose: Choose the appropriate test procedure and identify it by name.

3. Check: Check that the conditions for the test procedure are met.

4. Calculate: Calculate the test statistic and the p-value.

test statistic =
point estimate − null value

SE of estimate

5. Conclude: Compare the p-value to the significance level to determine whether
to reject H0 or not reject H0. Draw a conclusion in the context of HA.

• Decision errors. In a hypothesis test, there are two types of decision errors that
could be made. These are called Type I and Type II errors.

– A Type I error is rejecting H0, when H0 is actually true. We commit a Type I
error if we call a result significant when there is no real difference or effect.
P(Type I error) = α.
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– A Type II error is not rejecting H0, when HA is actually true. We commit a
Type II error if we call a result not significant when there is a real difference or
effect. P(Type II error) = β.

– The probability of a Type I error (α) and a Type II error (β) are inversely
related. Decreasing α makes β larger; increasing α makes β smaller.

– Once a decision is made, only one of the two types of errors is possible. If the
test rejects H0, for example, only a Type I error is possible.

• The power of a test.

– When a particular HA is true, the probability of not making a Type II error is
called power. Power = 1− β.

– The power of a test is the probability of detecting an effect of a particular size
when it is present.

– Increasing the significance level decreases the probability of a Type II error and
increases power. α ↑, β ↓,power ↑.

– For a fixed α, increasing the sample size n makes it easier to detect an effect
and therefore decreases the probability of a Type II error and increases power.
n ↑, β ↓,power ↑.

5.4 Does it make sense?

The inference procedures in this book require two conditions to be met.

• The first is that some type of random sampling or random assignment must be
involved. If this is not the case, the point statistic may be biased and may not follow
the intended distribution. Moreover, without a random sample or random assignment,
there is no way to accurately measure the standard error. (When sampling without
replacement, the sample size should be less than 10% of the population size in order
for the standard error formula to apply. In sample surveys, this condition is generally
met.)

• The second condition focuses on sample size and skew to determine whether the
point estimate follows the intended distribution.

Understanding what the term statistically significant does and does not mean.

• A small percent of the time (α), a significant result will not be a real result. If many
tests are run, a small percent of them will produce significant results due to chance
alone.3

• With a very large sample, a significant result may point to a result that is real but
unimportant. With a larger sample, the power of a test increases and it becomes easier
to detect a small difference. If an extremely large sample is used, the result may be
statistically significant, but not be practically significant. That is, the difference
detected may be so small as to be unimportant or meaningless.

3Similarly, if many confidence intervals are constructed, a small percent (100 - C%) of them will fail
to capture a true value due to chance alone. A value outside the confidence interval is not an impossible
value.
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Chapter Highlights

Statistical inference is the practice of making decisions from data in the context of uncer-
tainty. In this chapter, we introduced two frameworks for inference: confidence intervals
and hypothesis tests.

• Confidence intervals are used for estimating unknown population parameters by pro-
viding an interval of reasonable values for the unknown parameter with a certain level
of confidence.

• Hypothesis tests are used to assess how reasonable a particular value is for an un-
known population parameter by providing degrees of evidence against that value.

• The results of confidence intervals and hypothesis tests are, generally speaking, con-
sistent.4 That is:

– Values that fall inside a 95% confidence interval (implying they are reasonable)
will not be rejected by a test at the 5% significance level (implying they are
reasonable), and vice-versa.

– Values that fall outside a 95% confidence interval (implying they are not rea-
sonable) will be rejected by a test at the 5% significance level (implying they are
not reasonable), and vice-versa.

– When the confidence level and the significance level add up to 100%, the con-
clusions of the two procedures are consistent.

• Many values fall inside of a confidence interval and will not be rejected by a hypothesis
test. “Not rejecting H0” is NOT equivalent to accepting H0. When we “do not reject
H0”, we are asserting that the null value is reasonable, not that the parameter is
exactly equal to the null value.

• For a 95% confidence interval, 95% is not the probability that the true value lies inside
the confidence interval (it either does or it doesn’t). Likewise, for a hypothesis test,
α is not the probability that H0 is true (it either is or it isn’t). In both frameworks,
the probability is about what would happen in a random sample, not about what is
true of the population.

• The confidence interval procedures and hypothesis tests described in this book should
not be applied unless particular conditions (described in more detail in the following
chapters) are met. If these procedures are applied when the conditions are not met,
the results may be unreliable and misleading.

While a given data set may not always lead us to a correct conclusion, statistical inference
gives us tools to control and evaluate how often errors occur.

4In the context of proportions there will be a small range of cases where this is not true. This is because
when working with proportions, the SE used for confidence intervals and the SE used for tests are slightly
different, as we will see in the next chapter.



Chapter 6

Inference for categorical data

6.1 Inference for a single proportion

Most of the confidence interval procedures and hypothesis tests of this book involve: a
point estimate, the standard error of the point estimate, and an assumption about the
shape of the sampling distribution of the point estimate. In this section, we explore
inference when the parameter of interest is a proportion.

• We use the sample proportion p̂ as the point estimate for the unknown population
proportion p. The sampling distribution of p̂ is approximately normal when the
success-failure condition is met and the observations are independent. The obser-
vations can generally be considered independent when the data is collected from a
random sample or come from a stable, random process analogous to flipping a coin.
When the sampling distribution of p̂ is normal, the standardized test statistic also
follows a normal distribution.

• When verifying the success-failure condition and calculating the SE,

– use the sample proportion p̂ for the confidence interval, but

– use the null/hypothesized proportion p0 for the hypothesis test.

• When there is one sample and the parameter of interest is a single proportion:

– Estimate p at the C% confidence level using a 1-proportion Z-interval.

– Test H0: p = p0 at the α significance level using a 1-proportion Z-test.

• The first condition for the one proportion Z-interval and Z-test is the same. The
second one is different because of the use of the null proportion for the test.

1. The data come from a random sample or random process.

2. Interval: np̂ ≥ 10 and n(1− p̂) ≥ 10 (Make sure to plug in numbers
Test: np0 ≥ 10 and n(1− p0) ≥ 10 for n and p̂, or for n and p0!)

• When the conditions are met, we calculate the confidence interval and the test statistic
as follows.

Confidence interval: point estimate ± z? × SE of estimate
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Test statistic: Z = point estimate − null value
SE of estimate

Here the point estimate is the sample proportion p̂.

The SE of estimate is the SE of the sample proportion.

For an Interval, use: SE =
√

p̂(1−p̂)
n ; for a Test, use: SE =

√
p0(1−p0)

n

• The margin of error (ME) for one-sample confidence interval for a proportion is

z?
√

p̂(1−p̂)
n .

• To find the minimum sample size needed to estimate a proportion with a given
confidence level and a given margin of error, m, set up an inequality of the form:

z?
√
p̂(1− p̂)

n
< m

z? depends on the desired confidence level. Unless a particular proportion is given in
the problem, use p̂ = 0.5. We solve for the sample size n. The final answer should be
an integer, since n refers to a number of people or things.

6.2 Difference of two proportions

In the previous section, we looked at inference for a single proportion. In this section, we
compared two groups to each other with respect to a proportion or a percent.

• We are interested in whether the true proportion of yeses is the same or different
between two distinct groups. Call these proportions p1 and p2. The difference, p1−p2

tells us whether p1 is greater than, less than, or equal to p2.

• When comparing two proportions to each other, the parameter of interest is the
difference of proportions, p1 − p2, and we use the difference of sample proportions,
p̂1 − p̂2, as the point estimate.

• The sampling distribution of p̂1 − p̂2 is nearly normal when the success-failure con-
dition is met for both groups and when the data is collected using 2 independent
random samples or 2 randomly assigned treatments. When the sampling distribution
of p̂1 − p̂2 is nearly normal, the standardized test statistic also follows a normal
distribution.

• When the null hypothesis is that the two populations proportions are equal to each
other, use the pooled sample proportion p̂ = x1+x2

n1+n2
, i.e. the combined number

of yeses over the combined sample sizes, when finding the SE. For the confidence
interval, do not use the pooled sample proportion; use the separate values of p̂1 and
p̂2.

• When there are two samples or treatments and the parameter of interest is a difference
of proportions, e.g. the true difference in proportion of 17 and 18 year olds with a
summer job (proportion of 18 year olds − proportion of 17 year olds):

– Estimate p1− p2 at the C% confidence level using a 2-proportion Z-interval.
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– Test H0: p1 − p2 = 0 (i.e. p1 = p2) at the α significance level using a 2-
proportion Z-test.

• The conditions for the two proportion Z-interval and Z-test are the same.

1. Data come from 2 independent random samples or 2 randomly assigned treat-
ments.

2. n1p̂1 ≥ 10, n1(1− p̂1) ≥ 10, n2p̂2 ≥ 10, and n2(1− p̂2) ≥ 10

• When the conditions are met, we calculate the confidence interval and the test statistic
as we did in the previous section. Here, our data is a list of differences.

Confidence interval: point estimate ± z? × SE of estimate

Test statistic: Z = point estimate − null value
SE of estimate

Here the point estimate is the difference of sample proportions p̂1 − p̂2.

The SE of estimate is the SE of a difference of sample proportions.

For an Interval, use: SE =
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

; For a Test, use: SE =√
p̂(1− p̂)

√
1
n1

+ 1
n2

6.3 Testing for goodness of fit using chi-square

The inferential procedures we saw in the first two sections of this chapter are based on
the test statistic following a normal distribution. In this section, we introduce a new
distribution called the chi-square distribution.

• While a normal distribution is defined by its mean and standard deviation, the chi-
square distribution is defined by just one parameter called degrees of freedom.

• For a chi-square distribution, as the degrees of freedom increases:

– the center increases.

– the spread increases.

– the shape becomes more symmetric and more normal.1

• When we want to see if a model is a good fit for observed data or if data is repre-
sentative of a particular population, we can use a chi-square goodness of fit test.
This test is used when there is one variable with multiple categories (bins) that can
be arranged in a one-way table.

• In a chi-square goodness of fit test, we calculate a χ2-statistic, which is a measure
of how far the observed values in the sample are from the expected values under the

null hypothesis. χ2 =
∑ (observed − expected)2

expected

– Always use whole numbers (counts) for the observed values, not proportions or
percents.

1Technically, however, it is always right skewed.
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– For each category, the expected counts can be found by multiplying the sam-
ple size by the expected proportion under the null hypothesis. Expected counts
do not need to be integers.

– For each category, find (observed − expected)2

expected , then add them all together to get

the χ2-statistic.

• When there is a random sample and all of the expected counts are at least 5, the χ2-
statistic follows a chi-square distribution with degrees of freedom equal to number
of categories − 1.

• For a χ2 test, the p-value corresponds to the probability that observed sample values
would differ from the expected values by more than what we observed in this sample.
The p-value, therefore, corresponds to the area to the right of the calculated χ2-
statistic (the area in the upper tail).

• A larger χ2 represents greater deviation between the observed values and the expected
values under the null hypothesis. For a fixed degrees of freedom, a larger χ2 value
leads to a smaller p-value, providing greater evidence against H0.

• χ2 tests for a one-way table. When there is one sample and we are comparing
the distribution of a categorical variable to a specified or population distribution, e.g.
using sample values to determine if a machine is producing M&M’s with the specified
distribution of color, the hypotheses can often be written as:

H0: The distribution of [...] matches the specified or population distribution.

HA: The distribution of [...] doesn’t match the specified or population distribu-
tion.

We test these hypotheses at the α significance level using a χ2 goodness of fit test.

• The conditions for the χ2 goodness of fit test are as follows:

1. Data come from a random sample or random process.

2. All expected counts are ≥ 5.

• We calculate the test statistic as follows:

test statistic: χ2 =
∑ (observed − expected)2

expected ; df = # of categories − 1

• The p-value is the area to the right of the χ2-statistic under the chi-square curve with
the appropriate df .

6.4 Homogeneity and independence in two-way tables

• When there are two categorical variables, rather than one, the data must be arranged
in a two-way table and a χ2 test of homogeneity or a χ2 test of independence is
appropriate.
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• These tests use the same χ2-statistic as the chi-square goodness of fit test, but in-
stead of number of categories − 1, the degrees of freedom is (# of rows − 1) ×
(# of columns− 1). All expected counts must be at least 5.

• When working with a two-way table, the expected count for each row,column

combination is calculated as: expected count = (row total)×(column total)
table total .

• The χ2 test of homogeneity and the χ2 test of independence are almost identical.
The differences lie in the data collection method and in the hypotheses.

• When there are multiple samples or treatments and we are comparing the distri-
bution of a categorical variable across several groups, e.g. comparing the distribution
of rural/urban/suburban dwellers among 4 states, the hypotheses can often be written
as follows:

H0: The distribution of [...] is the same for each population/treatment.

HA: The distribution of [...] is not the same for each population/treatment.

We test these hypotheses at the α significance level using a χ2 test of homo-
geneity.

• When there is one sample and we are looking for association or dependence between
two categorical variables, e.g. testing for an association between gender and political
party, the hypotheses can be written as:

H0: [variable 1] and [variable 2] are independent.

HA: [variable 1] and [variable 2] are dependent.

We test these hypotheses at the α significance level using a χ2 test of independence.

• Both of the χ2 tests for two-way tables require that all expected counts are ≥ 5.

• The chi-square statistic is:

test statistic: χ2 =
∑ (observed − expected)2

expected

df = (# of rows − 1)(# of cols − 1)

• The p-value is the area to the right of χ2-statistic under the chi-square curve with
the appropriate df .

Chapter Highlights

Calculating a confidence interval or a test statistic and p-value are generally done with
statistical software. It is important, then, to focus not on the calculations, but rather on

1. choosing the correct procedure

2. understanding when the procedures do or do not apply, and

3. interpreting the results.

Choosing the correct procedure requires understanding the type of data and the method of
data collection. All of the inference procedures in Chapter 6 are for categorical variables.
Here we list the five tests encountered in this chapter and when to use them.
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• 1-proportion Z-test

– 1 random sample, a yes/no variable

– Compare the sample proportion to a fixed / hypothesized proportion.

• 2-proportion Z-test

– 2 independent random samples or randomly allocated treatments

– Compare two populations or treatments to each other with respect to one yes/no
variable; e.g. comparing the proportion over age 65 in two distinct populations.

• χ2 goodness of fit test

– 1 random sample, a categorical variable (generally at least three categories)

– Compare the distribution of a categorical variable to a fixed or known population
distribution; e.g. looking at distribution of color among M&M’s.

• χ2 test of homogeneity:

– 2 or more independent random samples or randomly allocated treatments

– Compare the distribution of a categorical variable across several populations
or treatments; e.g. party affiliation over various years, or patient improvement
compared over 3 treatments.

• χ2 test of independence

– 1 random sample, 2 categorical variables

– Determine if, in a single population, there is an association between two cate-
gorical variables; e.g. grade level and favorite class.

Even when the data and data collection method correspond to a particular test, we must
verify that conditions are met to see if the assumptions of the test are reasonable. All of
the inferential procedures of this chapter require some type of random sample or process.
In addition, the 1-proportion Z-test/interval and the 2-proportion Z-test/interval require
that the success-failure condition is met and the three χ2 tests require that all expected
counts are at least 5.

Finally, understanding and communicating the logic of a test and being able to accurately
interpret a confidence interval or p-value are essential. For a refresher on this, review
Chapter 5: Foundations for inference.



Chapter 7

Inference for numerical data

7.1 Inference for a single mean with the t-distribution

• The t-distribution.

– When calculating a test statistic for a mean, using the sample standard deviation
in place of the population standard deviation gives rise to a new distribution
called the t-distribution.

– As the sample size and degrees of freedom increase, s becomes a more stable
estimate of σ, and the corresponding t-distribution has smaller spread.

– As the degrees of freedom go to ∞, the t-distribution approaches the normal
distribution. This is why we can use the t-table at df = ∞ to find the value of
z?.

• When carrying out inference for a single mean, we use the t-distribution with n − 1
degrees of freedom.

• When there is one sample and the parameter of interest is a single mean:

– Estimate µ at the C% confidence level using a 1-sample t-interval.

– Test H0: µ = µ0 at the α significance level using a 1-sample t-test.

• The conditions for the one sample t-interval and t-test are the same.

1. The data come from a random sample or random process.

2. The sample size n ≥ 30 or the population distribution is nearly normal.

If the sample size is less than 30 and the population distribution is unknown,
check for strong skew or outliers in the data. If neither is found, then the condi-
tion that the population distribution is nearly normal is considered reasonable.

• When the conditions are met, we calculate the confidence interval and the test statistic
as we did in the previous chapter, except that we use t? for the critical value and we
use T for the test statistic.

Confidence interval: point estimate ± t? × SE of estimate
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Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the sample mean: x̄.

The SE of estimate is the SE of the sample mean: s√
n

.

The degrees of freedom is given by df = n− 1.

• To calculate the minimum sample size required to estimate a mean with C% confi-
dence and a margin of error no greater than m, we set up an inequality as follows:

z?
σ√
n
≤ m

z? depends on the desired confidence level and σ is the standard deviation associated
with the population. We solve for the sample size, n. Always round the answer up
to the next integer, since n refers to a number of people or things.

7.2 Inference for paired data

• Paired data can come from a random sample or a matched pairs experiment. With
paired data, we are often interested in whether the difference is positive, negative,
or zero. For example, the difference of paired data from a matched pairs experiment
tells us whether one treatment did better, worse, or the same as the other treatment
for each subject.

• We use the notation x̄diff to represent the mean of the sample differences. Likewise,
sdiff is the standard deviation of the sample differences, and ndiff is the number of
sample differences.

• To carry out inference on paired data, we first find all of the sample differences.
Then, we perform a one-sample procedure on the differences. For this reason, the
confidence interval and hypothesis test for paired data use the same t-procedures as
the one-sample methods, where the degrees of freedom is given by ndiff − 1.

• When there is paired data and the parameter of interest is a mean of the differences:

– Estimate µdiff at the C% confidence level using a matched pairs t-interval.

– Test H0: µdiff = 0 at the α significance level using a matched pairs t-test.

• The conditions for the matched pairs t-interval and t-test are the same.

1. There is paired data from a random sample or a matched pairs experiment.

2. ndiff ≥ 30 or the population of differences is nearly normal.

If the number of differences is less than 30 and it is not known that the population
of differences is nearly normal, we argue that the population of differences could
be nearly normal if there is no strong skew or outliers in the sample differences.

• When the conditions are met, we calculate the confidence interval and the test statistic
as we did in the previous section. Here, our data is a list of differences.

Confidence interval: point estimate ± t? × SE of estimate
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Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the mean of sample differences: x̄diff .

The SE of estimate is the SE of a mean of sample differences:
sdiff√
ndiff

.

The degrees of freedom is given by df = ndiff − 1.

7.3 Difference of two means using the t-distribution

• This section introduced inference for a difference of means, which is distinct from
inference for a mean of differences. To calculate a difference of means, x̄1 − x̄2, we
first calculate the mean of each group, then we take the difference between those
two numbers. To calculate a mean of difference, x̄diff , we first calculate all of the
differences, then we find the mean of those differences.

• Inference for a difference of means is based on the t-distribution. The degrees of
freedom is complicated to calculate and we rely on a calculator or other software to
calculate this.1

• When there are two samples or treatments and the parameter of interest is a difference
of means:

– Estimate µ1 − µ2 at the C% confidence level using a 2-sample t-interval.

– Test H0: µ1−µ2 = 0 (i.e. µ1 = µ2) at the α significance level using a 2-sample
t-test .

• The conditions for the two sample t-interval and t-test are the same.

1. The data come from 2 independent random samples or 2 randomly assigned
treatments.

2. n1 ≥ 30 and n2 ≥ 30 or both population distributions are nearly normal.

If the sample sizes are less than 30 and it is not known that both population
distributions are nearly normal, check for excessive skew or outliers in the data.
If neither exists, the condition that both population distributions could be nearly
normal is considered reasonable.

• When the conditions are met, we calculate the confidence interval and the test statistic
as follows.

Confidence interval: point estimate ± t? × SE of estimate

Test statistic: T = point estimate − null value
SE of estimate

Here the point estimate is the difference of sample means: x̄1 − x̄2.

The SE of estimate is the SE of a difference of sample means:
√

s21
n1

+
s22
n2

.

Find and record the df using a calculator or other software.

1If this is not available, one can use df = min(n1 − 1, n2 − 1).
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Chapter Highlights

We’ve reviewed a wide set of inference procedures over the last 3 chapters. Let’s revisit
each and discuss the similarities and differences among them. The following confidence
intervals and tests are structurally the same – they all involve inference on a population
parameter, where that parameter is a proportion, a difference of proportions, a mean, a
mean of differences, or a difference of means.

• 1-proportion z-test/interval

• 2-proportion z-test/interval

• 1-sample t-test/interval

• matched pairs t-test/interval

• 2-sample t-test/interval

The above inferential procedures all involve a point estimate, a standard error of the
estimate, and an assumption about the shape of the sampling distribution of the point
estimate.

From Chapter 6, the χ2 tests and their uses are as follows:

• χ2 goodness of fit - compares a categorical variable to a known/fixed distribution.

• χ2 test of homogeneity - compares a categorical variable across multiple groups.

• χ2 test of independence - looks for association between two categorical variables.

χ2 is a measure of overall deviation between observed values and expected values. These
tests stand apart from the others because when using χ2 there is not a parameter of in-
terest. For this reason there are no confidence intervals using χ2. Also, for χ2 tests, the
hypotheses are usually written in words, because they are about the distribution of one or
more categorical variables, not about a single parameter.

While formulas and conditions vary, all of these procedures follow the same basic logic
and process.

• For a confidence interval, identify the parameter to be estimated and the confidence
level. For a hypothesis test, identify the hypotheses to be tested and the significance
level.

• Choose the correct procedure.

• Check that both conditions for its use are met.

• Calculate the confidence interval or the test statistic and p-value, as well as the df if
applicable.

• Interpret the results and draw a conclusion based on the data.

For a summary of these hypothesis test and confidence interval procedures (including one
more that we will encounter in the next chapter, see the Inference Guide.

http://www.openintro.org/redirect.php?go=inference-guide&referrer=ahss_pdf


Chapter 8

Introduction to linear
regression

8.1 Line fitting, residuals, and correlation

• In Chapter 2 we introduced scatterplots, which show the relationship between two
numerical variables. When we use x to predict y, we call x the explanatory variable
or predictor variable, and we call y the response variable.

• A linear model can be useful for prediction when the variables have a constant, linear
trend. Linear models should not be used if the trend between the variables is curved.

• When we write a linear model, we use ŷ to indicate that it is the model or the
prediction. The value ŷ can be understood as a prediction for y based on a given
x, or as an average of the y values for a given x.

• The residual is the error between the true value and the modeled value, computed
as y − ŷ. The order of the difference matters, and the sign of the residual will tell us
if the model overpredicted or underpredicted a particular data point.

• The symbol s in a linear model is used to denote the standard deviation of the
residuals, and it measures the typical prediction error by the model.

• A residual plot is a scatterplot with the residuals on the vertical axis. The residuals
are often plotted against x on the horizontal axis, but they can also be plotted against
y, ŷ, or other variables. Two important uses of a residual plot are the following.

– Residual plots help us see patterns in the data that may not have been apparent
in the scatterplot.

– The standard deviation of the residuals is easier to estimate from a residual plot
than from the original scatterplot.

• Correlation, denoted with the letter r, measures the strength and direction of a
linear relationship. The following are some important facts about correlation.

– The value of r is always between −1 and 1, inclusive, with an r = −1 indicating
a perfect negative relationship (points fall exactly along a line that has negative
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slope) and an r = 1 indicating a perfect positive relationship (points fall exactly
along a line that has positive slope).

– An r = 0 indicates no linear association between the variables, though there
may well exist a quadratic or other type of association.

– Just like Z-scores, the correlation has no units. Changing the units in which x
or y are measured does not affect the correlation.

– Correlation is sensitive to outliers. Adding or removing a single point can have
a big effect on the correlation.

– As we learned previously, correlation is not causation. Even a very strong cor-
relation cannot prove causation; only a well-designed, controlled, randomized
experiment can prove causation.

8.2 Fitting a line by least squares regression

• We define the best fit line as the line that minimizes the sum of the squared residuals
(errors) about the line. That is, we find the line that minimizes (y1 − ŷ1)2 + (y2 −
ŷ2)2 + · · ·+(yn− ŷn)2 =

∑
(yi − ŷi)2. We call this line the least squares regression

line.

• We write the least squares regression line in the form: ŷ = b0 + b1x, and we can
calculate b0 and b1 based on the summary statistics as follows:

b1 = r
sy
sx

and b0 = ȳ − b1x̄.

• Interpreting the slope and y-intercept of a linear model

– The slope, b1, describes the average increase or decrease in the y variable if the
explanatory variable x is one unit larger.

– The y-intercept, b0, describes the average or predicted outcome of y if x = 0.
The linear model must be valid all the way to x = 0 for this to make sense,
which in many applications is not the case.

• Two important considerations about the regression line

– The regression line provides estimates or predictions, not actual values. It is
important to know how large s, the standard deviation of the residuals, is in
order to know about how much error to expect in these predictions.

– The regression line estimates are only reasonable within the domain of the data.
Predicting y for x values that are outside the domain, known as extrapolation,
is unreliable and may produce ridiculous results.

• Using R2 to assess the fit of the model

– R2, called R-squared or the explained variance, is a measure of how well
the model explains or fits the data. R2 is always between 0 and 1, inclusive,
or between 0% and 100%, inclusive. The higher the value of R2, the better the
model “fits” the data.

http://www.openintro.org/redirect.php?go=youtube-z8DmwG2G4Qc&list=PLkIselvEzpM63ikRfN41DNIhSgzboELOM&referrer=ahss_pdf
http://www.openintro.org/redirect.php?go=youtube-jZEKAlo1E54&list=PLkIselvEzpM63ikRfN41DNIhSgzboELOM&referrer=ahss_pdf
http://www.openintro.org/redirect.php?go=gdoc_aps_slides_8-2&referrer=ahss_pdf
http://www.openintro.org/redirect.php?go=gdoc_aps_slides_8-3&referrer=ahss_pdf
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– The R2 for a linear model describes the proportion of variation in the y variable
that is explained by the regression line.

– R2 applies to any type of model, not just a linear model, and can be used to
compare the fit among various models.

– The correlation r = −
√
R2 or r =

√
R2. The value of R2 is always positive and

cannot tell us the direction of the association. If finding r based on R2, make
sure to use either the scatterplot or the slope of the regression line to determine
the sign of r.

• When a residual plot of the data appears as a random cloud of points, a linear model
is generally appropriate. If a residual plot of the data has any type of pattern or
curvature, such as a ∪-shape, a linear model is not appropriate.

• Outliers in regression are observations that fall far from the “cloud” of points.

• An infuential point is a point that has a big effect or pull on the slope of the
regression line. Points that are outliers in the x direction will have more pull on the
slope of the regression line and are more likely to be influential points.

8.3 Inference for the slope of a regression line

In Chapter 6, we used a χ2 test of independence to test for association between two cate-
gorical variables. In this section, we test for association/correlation between two numerical
variables.

• We use the slope b1 as a point estimate for the slope β1 of the population regression
line. The slope of the population regression line is the true increase/decrease in y for
each unit increase in x. If the slope of the population regression line is 0, there is no
linear relationship between the two variables.

• Under certain assumptions, the sampling distribution of b1 is normal and the distri-
bution of the standardized test statistic using the standard error of the slope follows
a t-distribution with n− 2 degrees of freedom.

• When there is (x, y) data and the parameter of interest is the slope of the population
regression line, e.g. the slope of the population regression line relating air quality
index to average rainfall per year for each city in the United States:

– Estimate β1 at the C% confidence level using a Linear regression t-interval
.

– Test H0: β1 = 0 at the α significance level using a Linear regression t-test.

• The conditions for the linear regression t-interval and t-test for the slope are the same.

1. Data come from a random sample or randomized experiment.

2. The residual plot shows no pattern implying that a linear model is reasonable.

(Technically, the residuals should be independent, nearly normal, and have con-
stant standard deviation.)

• The confidence interval and test statistic are calculated as follows:

Confidence interval: point estimate ± t? × SE of estimate, or

http://www.openintro.org/redirect.php?go=youtube-depiT-hTaGA&list=PLkIselvEzpM63ikRfN41DNIhSgzboELOM&referrer=ahss_pdf
http://www.openintro.org/redirect.php?go=gdoc_aps_slides_8-4&referrer=ahss_pdf
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Test statistic: T = point estimate − null value
SE of estimate and p-value

point estimate: the slope b1 of the sample regression line

SE of estimate: SE of slope (find using computer output)

df = n− 2

• If the confidence interval for the slope of the population regression line estimates the
true average increase in the y-variable for each unit increase in the x-variable.

• The linear regression t-test and the matched pairs t-test both involve paired, numerical
data. However, the linear regression t-test for the slope asks if the two variables have a
linear relationship, specifically if the slope of the population regression line is different
from 0. The matched pairs t-test, on the other hand, asks if the two variables are in
some way the same, specifically if the mean of the population differences is 0.

8.4 Transformations for nonlinear data

• A transformation is a rescaling of the data using a function. When data are very
skewed, a log transformation often results in more symmetric data.

• Regression analysis is easier to perform on linear data. When data are nonlinear,
we sometimes transform the data in a way that results in a linear relationship.
The most common transformation is log of the y-values. Sometimes we also apply a
transformation to the x-values.

• To assess the model, we look at the residual plot of the transformed data. If the
residual plot of the original data has a pattern, but the residual plot of the transformed
data has no pattern, a linear model for the transformed data is reasonable, and the
transformed model provides a better fit than the simple linear model.

Chapter Highlights

This chapter focused on describing the linear association between two numerical variables
and fitting a linear model.

• The correlation coefficient, r, measures the strength and direction of the linear
association between two variables. However, r alone cannot tell us whether data
follow a linear trend or whether a linear model is appropriate.

• The explained variance, R2, measures the proportion of variation in the y values
explained by a given model. Like r, R2 alone cannot tell us whether data follow a
linear trend or whether a linear model is appropriate.

• Every analysis should begin with graphing the data using a scatterplot in order to
see the association and any deviations from the trend (outliers or influential values).
A residual plot helps us better see patterns in the data.

• When the data show a linear trend, we fit a least squares regression line of the
form: ŷ = b0 + b1x, where b0 is the y-intercept and b1 is the slope. It is important to
be able to calculate b0 and b1 using the summary statistics and to interpret them in
the context of the data.
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• A residual, y − ŷ, measures the error for an individual point. The standard devi-
ation of the residuals, s, measures the typical size of the residuals.

• ŷ = b0+b1x provides the best fit line for the observed data. To estimate or hypothesize
about the slope of the population regression line, first confirm that the residual plot
has no pattern and that a linear model is reasonable, then use a linear regression
t-interval for the slope or a linear regression t-test for the slope with n − 2
degrees of freedom.

In this chapter we focused on simple linear models with one explanatory variable. More
complex methods of prediction, such as multiple regression (more than one explanatory
variable) and nonlinear regression can be studied in a future course.



Final words

The main topics we have covered in this introduction to statistics are:

• Methods of data collection, with an emphasis on understanding and minimizing bias.

• Summarizing univariate and bivariate data graphically, numerically, and verbally.

• Probability and probability models.

• Sampling distributions and inferential procedures to better understand randomness
and make conclusions based on data.

We have only scratched the surface of each of these topics; however, we hope that this
introduction has generated curiosity and excitement for future study of statistics.
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